If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+30t-13=0
a = 16; b = 30; c = -13;
Δ = b2-4ac
Δ = 302-4·16·(-13)
Δ = 1732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1732}=\sqrt{4*433}=\sqrt{4}*\sqrt{433}=2\sqrt{433}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{433}}{2*16}=\frac{-30-2\sqrt{433}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{433}}{2*16}=\frac{-30+2\sqrt{433}}{32} $
| -b+3=-11b-4 | | -7y+2=(y-4) | | 10z-z=-1+6z-1-7 | | 7(x+3)-2x=5(2x+1) | | 3x+2–1x–1=7x2+x–2 | | 18=2(2a+5) | | (u+5)*7=32 | | 2x2+12=0 | | 28-4v=3v | | 5/2x+3=1/2+15 | | (q-7)*2=16 | | 4^x+7^x=65 | | 9/2x-1=3/6 | | 8(3.4x+3.9)+1.8x=7.6 | | 4x–15=11x | | 2(5x+6)=-36+18 | | 3(3+c)+c=c+4 | | x6+2=24 | | m+78=304 | | −7(z−3)=42 | | 24=m-19 | | 5x-1.2=3x+1.01 | | 6x-4=4(x-3) | | 1800^-2-2x=0 | | 9+(3/4)x=(7/8)x-10 | | -23+n=2(1-2n) | | 6m+5+7m=10-5m+3 | | z-104=64 | | -x^2-20x+300=0 | | 600=p+p+272 | | -3(2a-15)-a=24 | | 2(x+5)=2x+8 |